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Abstract
We study bremsstrahlung by high-energy particles multiply scattered elastically
in matter. It is shown that the formation of bremsstrahlung in the spectrum has
a new mode, compared with the regime considered by Migdal (Migdal 1954
Dokl. Akad. Nauk SSSR 96 49; Migdal 1956 Phys. Rev. 103 1811) when
the quantitative theory, the Landau–Pomeranchuk effect, in infinite matter was
derived. In this mode, the emission spectrum depends sufficiently on the
time the particle spends in the matter before photon emission. This results in
the rearrangement of the spectrum in the short-wave region and leads to the
nonlinear dependence of the spectral distribution of the bremsstrahlung on the
time spent by the particle in the matter.

PACS numbers: 25.15.−g, 12.39.Fe, 12.38.Mh, 12.40.Vv

1. Introduction

The influence of scattering in matter on bremsstrahlung by high-energy particles was first
studied by Landau and Pomeranchuk [1, 2]. In these papers, they pointed to the suppression
of the intensity of the bremsstrahlung due to the multiple elastic collisions of ultra-relativistic
particles in matter; the Landau–Pomeranchuk effect. The quantitative theory of this effect has
been derived by Migdal [3, 4]; the Landau–Pomeranchuk–Migdal (LPM) effect. The theory
of the LPM effect has been developed further during research of the dispersion properties of
scattering matter [5], its boundaries [6, 7], the Coulomb scattering of particles in matter
[9–11] etc1. The key feature of the results obtained in the above-mentioned papers is
the neglect of the influence of the multiple scattering of particles in matter on the photon
production during the period preceding the photon emission. This is shown as the linear
dependence of bremsstrahlung intensity on the time spent by the particle in the matter
[1–11]2. Such behaviour of the emission spectrum is reasonable when the matter is infinite
rather than thick and confined in space, since in the latter case there is some interval of time

1 A detailed review of the above-mentioned papers and other methods of calculating the LPM effect is given in [12].
2 The exception is the extremely thin media [10, 11, 13–15] when the emission is generally a transition one in nature,
which reduces progressively with the increase of the target thickness [6, 7, 10, 11].
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(the period from the entrance of the particle into the matter to the moment of the photon
emission) which determines the state of the particle before the photon production. Therefore,
at least quantitative estimations of the application of the methods developed in [3, 4] are
necessary for the calculation of bremsstrahlung in the case of confined matter.

On the basis of the formalism of the two-particle Green’s function in non-equilibrium
matter [11], we obtain the probability of photon production by high-energy particles multiply
scattered elastically in confined matter. If the scattering in the medium is rather weak, the
spectrum coincides with that obtained in [3, 4] for infinite matter. When the scattering in
matter is fairly strong, then another regime of bremsstrahlung formation takes place. In this
case, the coherent time depends on the time spent by the particle in the matter before photon
production. This leads to the rearrangement of the emission spectrum calculated in [3, 4]. It
manifests itself in the dependence of the probability of the photon production on the parameters
of the studied problem, which are the photon energy, the observation time, and the energy
of the particle. In particular, the probability becomes the significantly nonlinear function of
the observation time and the photon rate appears to be strongly suppressed in the short-wave
region of the spectrum, compared with the spectral distribution obtained in [3, 4].

2. The coherence length and coherence time

Let us consider an ultra-relativistic particle (E � m, where E and m are its energy and mass)
which enters the matter at the time t = 0 and undergoes multiple elastic collisions therein.

We start to study bremsstrahlung in matter by calculating the coherence time τ and
coherence length l [6] for the photon emission. These are very convenient characteristics,
which allow us to understand qualitatively the dynamics of bremsstrahlung formation in
matter.

By definition, the coherence time is the period during which a photon leaves a particle for
the distance of the order of the wavelength of the photon. This means (h = c = 1)

τ −
�k
k
(�r(t + τ ) − �r(t)) ∼ 1

ω
(1)

where ω and �k are the energy and wave vector of the photon, and �r(t) and �r(t + τ ) are the
radius vectors of the emitting particle at the moments when the photon production starts and
finishes, respectively. When h = c = 1, the coherent length and the coherent time coincide,
l = τ .

Let us assume that the energy of the particle is large enough so that small-angle collisions
take place in the matter and the influence of photon production on the particle scattering in
the medium is negligible: E � ω. We also assume that the particle only undergoes elastic
collisions therein. In this case, its velocity is given by the standard formulae

�v = v0 �ez

(
1 − �η2

2

)
+ v0 �η �η ⊥ �ez | �η| � 1 (2)

where v0 is the particle velocity at the initial time t = 0 when it entered the matter along the
OZ-axis.

If small-angle elastic scattering of the particle occurs in the matter, the value �η(t)2 is given
by the formula [1–5]

�η(t)
2 = 〈�s

2
〉
t (3)

where the parameter
〈
�s

2
〉

is the mean square of the multiple scattering angle of the particle
per unit path length [1–5].
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To simplify the calculations we assume that the OZ-axis is directed along the vector �k.
Then, substituting equation (2) into equation (1) we find

2ωγ −2τ +
〈
�s

2〉 kv0τ
2 + 2

〈
�s

2〉 kv0tτ ∼ 1 (4)

where γ = E/m = (
1 − v2

0

)−1/2 � 1. The formula determining τ shows that the coherent
time depends in general on the moment t of the photon emission.

The solution of equation (4) leads to

τ =
(

ω〈
�s

2
〉
kv0γ 2

+ t

)
·


√√√√1 +

4
〈
�s

2
〉
kv0(

ωγ −2 +
〈
�s

2
〉
kv0t

)2 − 1


 . (5)

It follows from this formula that there are two modes (or regimes) of photon emission by a high-
energy particle. These modes differ from one another by the dependence (or independence)
of τ on the time t spent by the particle in the matter before photon production, since the value
of the parameter

〈
�s

2
〉
tγ 2 can be either large or small.

If the parameter
〈
�s

2
〉
tγ 2 � 1 is rather large we have (k = ω)

τ ∼ 1√〈
�s

2
〉
ω

ω � 〈
�s

2〉 γ 4 (6)

τ ∼ γ 2

ω
ω � 〈

�s
2〉 γ 4. (7)

The first case determined by equation (6) corresponds to the photon emission when the
Landau–Pomeranchuk effect occurs [1, 2]. The fulfilment of condition (7) means that the
radiation is formed due to the particle collisions with single scatterers in the matter. In this
case, the emission spectrum is given by the Bethe–Heitler formula [16]. The key feature
of the considered regime

(〈
�s

2
〉
tγ 2 � 1

)
, that of the bremsstrahlung formation, is that the

coherent time does not depend on the time spent by the particle in the matter before the photon
production.

In the second case, when
〈
�s

2
〉
tγ 2 � 1, we find

τ ∼ 1√〈
�s

2
〉
ω

ω � (〈
�s

2〉 t2)−1
(8)

τ ∼ 1

ω
〈
�s

2
〉
t

ω � (〈
�s

2〉 t2)−1
. (9)

It follows from formulae (8) and (9) that the regime of the bremsstrahlung formation at〈
�s

2
〉
tγ 2 � 1 differs strongly from the mode studied in [1–12] and discussed above. Although

the Landau–Pomeranchuk effect still takes place in such a mode in the long-wave region
of the spectrum, the production of rather hard photons depends significantly on the time spent
by the particle before the photon generation (see equation (9)).

The absence of such a regime of bremsstrahlung formation in infinite matter [1–4] is
understandable since there is no moment of time which could be the original moment in the
infinite medium. But, in the study of the emission in confined matter, such a moment takes
place. This is the moment when the particle enters the matter.

The fact that the regime discussed above does not take place in the study of bremsstrahlung
in confined media in [6, 7] can be explained in the following way. When the thickness of
matter is rather large so that the particle undergoes multiple collisions therein, then the
bremsstrahlung is formed both due to the crossing of the particle through the matter border
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(transition radiation) and owing to scattering of the particle inside the medium (bulk emission).
Galitskii and Yakimetsl [6] and Gol’dman [7] have calculated the bulk emission using the
method proposed by Migdal for infinite matter. The method [1–4] consists of the averaging
of the general formula for the probability of photon production over all possible coordinates
�r(t1); �r(t2) and velocities �v(t1); �v(t2) of the particle in the matter. Following Migdal, such
averaging can be done by introducing the variables τ = t1 − t2 (the coherent time) and t = t2
and the conditional probability P(�r(t), �v(t), t; �r(t + τ ), �v(t + τ ), t + τ ). This is the probability
that the coordinate and velocity of the particle are �r(t + τ ) and �v(t + τ ) at the moment t + τ

provided that they are �r(t) and �v(t) at time t. As a result, in the case of rather soft photons
(ω � E) the probability of photon production dW can be written [3, 4] as follows

dW = α

2π2ω
Re
∫ T

−T

dt

∫ T −t

0
dτ d�v d�v′ d�r d�r ′ · P(�r, �v, t; �r ′, �v′, t + τ )(�k × �v) · (�k × �v′)

· exp(iωτ − i(�k�r ′ − �k�r)) d3�k (10)

where α is the fine structure constant, and T is the time spent by the particle in the matter. Note
that, although the variable t runs from −T to T according to the direct changes of variables in
integrals, it really goes from 0 to T since, by definition, the probability P(�r, �v, t; �r ′, �v′, t + τ )

is equal to zero when t is negative.
The main approximation of Migdal’s method is the factorization of the conditional

probability P
P(�r(t), �v(t), t; �r(t + τ ), �v(t + τ ), t + τ )

= P1(�r(t), �v(t), t) · P2(�r(t + τ ) − �r(t), �v(t + τ ) − �v(t), τ ) (11)

where P1 is the probability that the coordinate and velocity of the particle are �r(t) and �v(t) at
time t; P2 is the probability that they will differ from �r(t) and �v(t) by (�r(t + τ ) − �r(t)) and
�v(t + τ ) − �v(t)) at a later time t + τ .

The probability P2(τ ) depends only on τ at any moment t but it does not depend on t
itself, although t is the initial moment of time for the function P2(τ ). The independence of
P2(τ ) from t is accounted for by the equivalence of all moments of particle motion in infinite
matter, which does not occur in confined matter.

Note that the statement of the problem of bremsstrahlung in confined matter in itself
means the setting of the initial condition on the border of the matter and not inside it. On
the other hand, the solution of the considered problem demands the averaging of the required
quantities over all possible coordinates and velocities of the particle in the matter. Indeed, this
means that there is no fixed trajectory along which the particle moves. This circumstance does
not allow us to transfer the origin inward from the border of the matter by means of moving
along the particle trajectory or to reduce the problem of bremsstrahlung in infinite matter to
that in a confined medium.

3. Two-particle Green’s function and bremsstrahlung in matter

The probability of photon production by the current jν is given by the following expression
[17]

d4w = 4πeµeν(1 + nγ )δ
(
ω2 − ωk

2
) ∫

d4x1 d4x2 exp(−ik(x1 − x2))〈jµ+
(x1)j

ν(x2)〉 d4k

(2π)3

(12)

where k = (ω, �k) and eα are the four-vector and polarization vector of a photon, nγ is the
occupancy number of photons, and jν(x) is the particle current. The angled brackets represent
the averaging over some states of particles in the matter; x are four-coordinates.
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The bilinear combination of currents in the previous equation can be written as follows

〈jµ+(x1)j
ν(x2)〉 = 〈i|(Ôµ

)α,β((Ô
†
)ν)γ,δ|j 〉 〈�†

δ(x1)�γ (x1)�β(x2)�
†
α(x2)

〉
(13)

where 〈i|(Ôµ
)α,β((Ô

†
)ν)γ,δ|j 〉 is the matrix element of some operator which is independent of

the four-coordinates, �α(x) are the psi-operators in the Heisenberg picture, and α, β, γ and δ

are the spin variables.
Thus, the problem of calculating bremsstrahlung in matter is reduced to that of obtaining

the two-particle Green’s function, which is proportional to the product of four �-functions.
Let us assume that the influence of scattering in matter on the spin states of the particles

is negligible. This is correct when the particles are ultra-relativistic particles at least [1–4].
Then, expanding the correlator

〈
�†

δ(x1)�γ (x1)�β(x2)�
†
α(x2)

〉
over the whole set of plane

waves, we can write the expression for the probability of photon production dW as follows
(see equations (1)–(3))

d4W = d4w = 8π

(2s + 1)

∫
d4k

(2π)3

{
(1 + nγ )δ

(
ω2 − ωk

2) ∫ T

−T

dt1

∫ T

−T

dt2 exp(iωt1 − iωt2)

×
∫

dp0
1 dp0

2 d4p3 d4p4 δ3( �p3 − �p1 − �k) · δ3( �p2 − �p4 − �k)

· exp
(
i
(
p0

3 − p0
1

)
t1
)

exp
(−i

(
p0

2 − p0
4

)
t2
)

× Tr
[
eµeν〈i|(Ôµ

)α,β((Ô
†
)ν)γ,δ|j 〉uα(p1)u

β(p2)u
γ (p3)u

δ(p4)
]

· K(p4(+); p2(−)|p3(−); p1(+))

}
(14)

where pi = (
p0

i , �pi

)
are the four-momentum of the radiating particle, s is its spin, uα(p) are

spinors, and T is the observation time or the whole time spent by the particle in the matter.
The line over d4w represents the averaging and summing over the corresponding spin states
of the particles in the matter. The function K(p4(+); p2(−)|p3(−); p1(+)) is the two-particle
Green’s function K(4(+), 2(−), 3(−), 1(+)) in the momentum representation

K(p4(+); p2(−)|p3(−); p1(+)) =
∫

dX1 dX2 dX3 dX4 exp(−ip1X1 − ip2X2 + ip3X3

+ ip4X4) · u(p3)u(p4)u(p1)u(p2)
〈
�†

δ(x1)�γ (x1)�β(x2)�
†
α(x2)

〉
. (15)

Thus, the problem of calculating bremsstrahlung in matter consists of obtaining the so-
called non-chronological two-point Green’s function K(p4(+); p2(−)|p3(−); p1(+)) in the
momentum representation.

In the case of rather soft photons ω � E, the matrix elements of the operator Ô can be
easily found. After the calculation of the trace over all spin variables in equation (14) the
square of Ô appears to be equal [3, 4, 17] to the product of the vector products of the wave
vector and the particle momentum. As a result, we obtain from equation (14)

dW = α

4ωπ2E2

∫ T

−T

dt1

∫ T

−T

dt2(�k × �p′) · (�k × �p) exp(−iωt1 + iωt2)

×F( �p′ − �k/2; �p′ + �k/2; t2; �p + �k/2; �p − �k/2; t1) d3�k (16)

where α is the fine structure constant, and T is the observation time.
In obtaining the previous formula, the influence of the scattering on the mixing of the spin

variables of the particle has been neglected, and we have also assumed that there is no photon
bath in the matter (nγ = 0). The function F( �p′ − �k/2; �p′ + �k/2; t2; �p + �k/2; �p − �k/2; t1) is
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connected with K(p4(+); p2(−)|p3(−); p1(−)) introduced with equation (15) by using the
expression

F( �p′ − �k/2; �p′ + �k/2; t2 �p + �k/2; �p − �k/2; t1)

=
∫

dp0
1 dp0

2 d4p3 d4p4δ
3( �p3 − �p1 − �k) · δ3( �p2 − �p4 − �k) · exp

(
i
(
p0

3 − p0
1

)
t1
)

× exp
(−i

(
p0

2 − p0
4

)
t2
) · K(p4(+); p2(−)|p3(−); p1(+))

≡ F( �p′; �p′
t2 �p; �p; t1). (17)

4. Bremsstrahlung by ultra-relativistic particles in matter

Let us consider a fast (E � ω; ω is the photon energy) ultra-relativistic particle (m � E; m
is the particle mass, E is its energy) which enters the homogeneous amorphous matter at time
t = 0, and undergoes multiple elastic collisions therein. We assume that the concentration of
scatterers in the matter and the interaction of the particles with them are such that the following
inequality takes place

n|f |2 · max{|f |; λ} � 1 (18)

where n is the number of particles per unit volume, f is the scattering amplitude of the particle
by the centre in the matter, and λ is the wavelength of the particle.

This inequality corresponds to what is known as the gas approximation [18]. Then,
to the first non-vanishing approximation with respect to the interaction of the particle and
the concentration of the scattering centres of the matter, the function F( �p′; �p′

t2 �p; �p; t1)

determined by equation (17) satisfies two kinetic-like equations3(
∂

∂t1
− i�k �v

)
F�k( �p′; �p′; t2; �p; �p; t1)

= (2π)4nm

E( �p)
·
∫

d3 �q|V ( �q)|2 · {(F�k( �p′; �p′; t2; �p + �q; �p + �q; t1)

− F�k( �p′; �p′; t2; �p; �p; t1)) · δ(E( �p + �q) − E( �p))

+ [F�k( �p′; �p′ + �q; �p + �q; t2; �p; t1) · δ(E( �p′) − E( �p′ + �q))

− F�k( �p′; �p′ − �q; t2; �p; �p + �q; t1) · δ(E( �p′
)

− E( �p′ − �q))] · cos(t1(E( �p + �q) − E( �p)))} (19)

(
∂

∂t2
+ i�k �v′

)
F�k( �p′; �p′; t2 �p; �p; t1)

= (2π)4nm

E( �p)
·
∫

d3 �q|V ( �q)|2 · {(F�k( �p′ + �q; �p′ + �q; t2; �p; �p; t1)

− F�k( �p′; �p′; t2; �p+; �p; t1)) · δ(E( �p′ + �q)

− E( �p′
))[F�k( �p′; �p′ + �q; t2; �p + �q; �p; t1) · δ(E( �p) − E( �p + �q))

− F�k( �p′; �p′ + �q; t2; �p; �p − �q; t1) · δ(E( �p − E( �p − �q))]

· cos(t2(E( �p′ + �q) − E( �p′
)))}. (20)

Here E( �p) is the energy of the particle having momentum �p (the dispersion law is supposed
to be known); �v = �p/E( �p); �v′ = �p′/E( �p′) are the particle velocities; V ( �q) is the Fourier
3 A detailed derivation of these equations is presented in the appendix.
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image of the potential of the interaction of the particle with the single scattering centre; n is
the number of centres per unit volume.

It is clear that the solution of these equations depends essentially on the oscillating terms
on the right-hand sides of equations (19) and (20) which contain the cosines.

First we consider the situation when the following inequality takes place

t1,2|E( �p + �q) − E( �p′ + �q)| � 1. (21)

To calculate the right-hand side of the inequality (21) we note that �p and �p′ in this formula
are the particle momentum before and after the photon emission, but �q is the momentum
transferred as a result of the individual collision of the particle in the matter.

Then we can write

t1,2|E( �p + �q) − E( �p′ + �q)| ∼ t
( �p �p′

) �q
p

∼ t
(〈
�s

2〉 τ )1/2
q⊥ � tτ

〈
�s

2〉 k � 1 (22)

where q⊥ is the momentum which is perpendicular to the direction of the particle movement,
and

〈
�s

2
〉

is the mean square of the multiple scattering angle of the particle per unit path
length, which has been introduced previously (see equations (2) and (3)).

It is seen from the last inequality that one is correct when the scattering in the matter is
rather weak (see equation (5) and the text following it). In this way, the coherent time τ is
given by equations (6) and (7) so that the mode of bremsstrahlung formation, which has been
studied by Migdal [3, 4], takes place. On the other hand, the last inequality means that the
cosines in the right-hand sides of equations (19) and (20) are approximately unit.

Let us expand the collision integrals in the formulae (19) and (20) over the small parameter
q/p � 1. As a result, we derive the following equations for the function F�k( �p, �p′

, t1, t2):

∂F�k( �p, �v′, t1, t2)
∂t1

− i�k · �v · F�k( �p, �p′
, t1, t2) =

〈
�s

2
〉

4
·
{

∂2

∂ �η2 +
∂2

∂ �η∂�ζ

}
F�k( �p, �p′

, t1, t2) (23)

∂F�k( �p, �p′
, t1, t2)

∂t1
+ i�k · �v′ · F�k( �p, �p′

, t1, t2) =
〈
�s

2
〉

4
·
{

∂2

∂�ζ 2
+

∂2

∂ �η∂�ζ

}
F�k( �p, �p′

, t1, t2). (24)

In equations (23) and (24) the following notations are introduced:

F( �p′ − �k/2 + �q; �p′ + �k/2; t2; �p + �k/2 − �q; �p − �k/2; t1) ≡ F�k( �p, �p′, t1, t2)

�p = p0 �ez

(
1 − �η2

2

)
+ p0 �η �η ⊥ �ez | �η| � 1

�p′ = p0 �ez

(
1 −

�ζ 2

2

)
+ p0�ζ �ζ ⊥ �ez |�ζ | � 1 (25)

〈
�s

2〉 = 2mnp0
−2E−2

∫
d3 �qq|V ( �q)|2δ(E( �p) − E( �p + �q))

�v = �p
E

�v′ = �p′

E
|�v| = |�v′| = v0 p0 = | �p(t = 0)|.

Furthermore, let us assume the variables τ ≡ t1 − t2 (the coherent time); t ≡ t2. After
this, we sum equations (23) and (24). When the time of the photon production τ � t , we can
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neglect τ in the equation which describes the evolution of the function F�k during the period
t � τ which precedes the photon emission.

Then, we find

∂F�k( �p, �p′
, t, τ )

∂τ
− i�k · �v · F�k( �p, �p′, t, τ ) =

〈
�s

2
〉

4
·
{

∂2

∂(�η − �ζ )2

}
F�k( �p, �p′, t, τ ) (26)

∂F�k( �p, �p′
, t, τ = 0)

∂t
− i(�k · �v − �k · �v′) · F�k( �p, �p′, t, τ = 0)

=
〈
�s

2
〉

4
·
(

∂

∂ �η +
∂

∂ �ζ

)2

F�k( �p, �p′
, t, τ = 0). (27)

In obtaining these equations, the derivative with respect to the variable �ζ in equation (26)
has been ignored because F�k is far more smooth a function of �ζ than the variable (�η − �ζ ).

Solving equations (26) and (27) under the initial condition

F�k( �p, �p′, t1 = 0, t2 = 0) = δ(p − p0)

p2
· δ(p′ − p0)

p2
· δ(�η) · δ(�ζ ) (28)

we find the function F�k( �p, �p′
, t, τ ). Substituting F�k( �p, �p′

, t, τ ) into the formula (16) for the
probability of photon production, we derive the result which coincides with the well-known
formula obtained by Migdal [3, 4] for bremsstrahlung in infinite matter

dW

dω
= αT

πγ 2

∫ +∞

0
dz exp

(
−z
(
ω
/ 〈

�s
2
〉)1/2

2γ 2

)
·
{

sin

(
z
(
ω
/ 〈

�s
2
〉)1/2

2γ 2

)
coth z − π

4

}

(29)

where γ = E/m is the Lorentz factor of an ultra-relativistic particle, and k = ω.
The distinctive feature of the spectral distribution (29) is the linear dependence of the

probability on the observation time T. This corresponds to the neglect of the influence of
scattering matter on photon production during the time preceding the photon emission. Such a
result is reasonable since the state of the particle is changed insignificantly due to scattering in
the matter when the time preceding the photon production is rather small (see equations (21)
and (22)).

In the second case, when the scattering in the matter is rather strong so that tτ
〈
�s

2
〉
k � 1,

the cosines in equations (19) and (20) are rapidly oscillating functions. Then, the terms
containing these cosines in the right-hand sides of equations (19) and (20) are equal to zero.
As a result, we have the following equations for the function F�k( �p, �p′, t1, t2)

∂F�k( �p, �p′
, t1, t2)

∂t1
− i�k · �v · F�k( �p, �p′, t1, t2) =

〈
�s

2
〉

4
·
{

∂2

∂ �η2

}
F�k( �p, �p′, t1, t2) (30)

∂F�k( �p, �p′
, t1, t2)

∂t1
+ i�k · �v′ · F�k( �p, �p′

, t1, t2) =
〈
�s

2
〉

4
·
{

∂2

∂ �ζ 2

}
F�k( �p, �p′

, t1, t2). (31)

Since the variables in equations (30) and (31) are independent but the initial condition
(28) is the product of two functions of the same independent variables, the solution of
the equations (30) and (31) with the initial condition (28) can be easily found. This is
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given by the formula

F�k( �p, �p′
, t1, t2) = δ(p − p0)

p2
· δ(p′ − p0)

p′2 · a

π
〈
�s

2
〉
sinh(at1)

· exp

{
− a〈

�s
2
〉 coth(at1) · (�η)2

+
2a〈
�s

2
〉 tanh

(
at1

2

)
· (�η) · ( �θ) − 2a〈

�s
2
〉 tanh

(
at1

2

)
· ( �θ)2 + ikvt1

}

· b

π
〈
�s

2
〉
sinh(bt2)

· exp

{
− b〈

�s
2
〉 coth(bt2) · (�ζ )2 +

2b〈
�s

2
〉 tanh

(
bt2

2

)

· (�ζ ) · ( �θ) − 2b〈
�s

2
〉 tanh

(
bt2

2

)
· ( �θ)2 − ikvt2

}
(32)

where a, b, v, �θ are given by the expressions

a =
(1 + i)

√
kv
〈
�s

2
〉

2
b =

(1 − i)
√

kv
〈
�s

2
〉

2
v = p0

E( �p0)

�k = k �ez

(
1 −

�θ2

2

)
+ k �θ �θ ⊥ �ez | �θ | � 1. (33)

Both the statement of the problem and the initial condition (28) mean that the particle
begins to move in the matter at time t = 0. On the other hand, it moves as a free particle
before this moment. To take this fact into account, we rewrite equation (16) as follows [7]

dW = α

4π2ωE2

∫ T

0
dt1

∫ T

0
dt2

∫
d3 �p

∫
d3 �p′(�k × �p) · (�k × �p′) · {exp(i(t1 − t2))

· [F�k( �p, �p′, t1, t2) + F�k( �p, �p′, t1, t2; a = b = 0)]

− 2Re[F�k( �p, �p′, t1, t2; a; b = 0) · exp(i(t1 − t2))]} d3�k (34)

where α is the fine structure constant, and T is the observation time (the time spent by the
particle in the matter).

Substituting F�k given by equation (32) into equation (34) and carrying out the necessary
integrations, we derive

dW

dω
= αω

2πγ 2
Re



∫ T

0
dt1

∫ T

0
dt2 exp

(
− i(t1 − t2)ω

2γ 2

) 2(
a

〈�s
2〉 tanh at1 − iωt2

2

)
cosh2 at1

− 1(
a

〈�s
2〉 tanh at1 + b

〈�s
2〉 tanh bt2

)
cosh2 at1

+
2αa

πω

∫ T

0
dt exp

(
− itω

2γ 2

)[
1

at
− 1

sinh at cosh at

]
 (35)

where k = ω; γ = E/m is the Lorentz factor of an ultra-relativistic particle.
Let us analyse the probability of the photon production (35). In the range of the soft

photons ω � 〈
�s

2
〉−1

T −2 the probability is given by the formula

dW

dω
= αT

π

√〈
�s

2
〉

ω
. (36)
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Figure 1. 1; the spectrum according to the Migdal’s formula; 2, 3; the present results: 2; T =
0.1 X0; 3; T = 0.5 X0; S2 = αω X0.

This expression coincides with the results obtained by Migdal in the long-wave range of the
emission spectrum in infinite matter. This takes place because very soft photons are formed
over the whole trajectory of the particle motion in the matter. Therefore, the influence of
multiple collisions on photon production during the time preceding the photon generation is
negligible. As a result, the probability is the linear function of the observation time T for such
energies of the photons.

In the intermediate range of the spectrum
〈
�s

2
〉−1

T −2 � ω � 〈
�s

2
〉
γ 4 we have

dW

dω
= −2α

ω
ln

(
1

2γ 2

√
ω〈

�s
2
〉
)

. (37)

This formula coincides within a small term with the expression obtained by Pafomov [8] for
transition radiation. In this way, we should note that the formula derived by Pafomov should
be added to the Migdal result [3, 4] to obtain the total radiation, while equation (37) gives the
total bremsstrahlung itself. This means that, in the intermediate range of the spectrum, the
bremsstrahlung is formed due to the crossing of the particle through the matter border but
the radiation arising from the movement of the particle inside the matter appears to be
suppressed.

The probability of the production of the hard photons, so that ω � 〈
�s

2
〉
γ 4, is given by

the expression

dW

dω
= α

πω

(
3

8
+

16
〈
�s

2
〉
γ 8

ω

)
. (38)

The dependence of the probability of photon production (35) is shown in figure 1.
It follows from equations (35)–(38) that the emission spectrum in such a mode (when

scattering in the matter is so strong that tτ
〈
�s

2
〉
k � 1) is rearranged in comparison with

Migdal’s formula (see equation (29)). This manifests itself in the dependence of the probability
of the photon production both on the observation time T and on the photon energy ω.
Firstly, the probability dW is not a linear function of the observation time4. Besides, dW

depends logarithmically on the photon energy in the range of rather hard photons. Finally,
4 The nonlinear dependence of the probability of photon production obtained in [10, 11] is connected with taking
into account the border of confined matter.
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the probability of photon production is strongly suppressed in the short-wave region of the
spectrum (see figure 1) compared with the mode studied by Migdal [3, 4]. The source of the
suppression is the breaking of the coherence of photon production due to the collisions of
the particles in the matter before the photon production. As a consequence of the scattering
of the particle in the medium, its velocity appears inside some cone of the scattering angles.
This means that the particle can be found with some probability inside this cone and can emit
a photon when its velocity is one of a number of velocities inside the cone. If the apex angle
of the cone is so large that tτ

〈
�s

2
〉
k � 1 (see also the text before equation (8)) this leads to

the breaking of the coherence of the photon production since the velocities inside the cone
are independent. This is the reason that, in the case of rather strong scattering, the collisions
of the particles in the matter break the coherence of the photon emission more dramatically
than in the situation of weak scattering matter

(
tτ
〈
�s

2
〉
k � 1

)
when the emission spectrum

is determined by Migdal’s formula (29).

5. Conclusion

On the basis of the diagram formalism for the two-particle Green’s function, we study the
bremsstrahlung by ultra-relativistic particles multiply scattered elastically in confined matter.
The probability of the bremsstrahlung is found. It is shown that, in the case of rather weak
scattering matter, when tτ

〈
�s

2
〉
k � 1, the emission spectrum is given by the formulae of

[3, 4]. This inequality determines the application limits of the results of Migdal’s theory of
bremsstrahlung by ultra-relativistic particles in the case of confined matter.

When the scattering in the matter is fairly strong so that tτ
〈
�s

2
〉
k � 1 the emission

spectrum is rearranged (see equations (35)–(38) and figure 1) compared with that given by
equation (29), and corresponds to the rather weak scattering of the particles in the medium
tτ
〈
�s

2
〉
k � 1. This rearrangement manifests itself in the dependence of the probability of

the photon production on all parameters of the considered problem: the observation time,
the photon energy and the energy of the particle. The probability becomes the sufficiently
nonlinear function of the time spent by the particle in the matter. It also depends logarithmically
on the photon energy in the intermediate range of the emission spectrum. In addition, the
probability of photon production appears to be strongly suppressed in the short-wave region
of spectrum.

Appendix

We use the formalism of the two-particle Green’s functions [19] for the derivation of the
equation for the correlator 〈�†

δ(x1)�γ (x1)�β(x2)�
†
α(x2)〉 determining the probability of

photon production in scattering matter.
Following [19], we introduce the standard K, anti-chronological K̃ , non-chronologicalK ′

and partial chronological K̂ two-particle Green’s functions in matter

Kδ,β;γ,α(x4, x2; x3, x1) ≡ K(4, 2; 3, 1) = 〈T̂ {�̂3�̂4�̂
+
1 �̂+

2

}〉
K̃δ,β;γ,α(x4, x2; x3, x1) ≡ K(4, 2; 3, 1) = 〈 ˆ̃T {�̂3�̂4�̂

+
1 �̂+

2

}〉
K ′

δ,β;γ,α(x4, x2; x3, x1) ≡ K(4, 2; 3, 1) = 〈{�̂3�̂4�̂
+
1 �̂+

2

}〉 (39)

where the operators T and T̃ denote the chronological ordering of the field operators from left
to right and from right to left, respectively. The angled brackets correspond to the averaging
over some arbitrary state of the particles in the matter. This state can also be nonstationary.
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As for the partial chronological Green’s functions, these are also constructed from the
product of the four �-functions as follows. Only three of these are either chronological or
anti-chronological. In other words, such Green’s functions are the correlators of the type of〈
�̂4

ˆ̃T
{
�̂+

2 �̂3�̂
+
1

}〉
,
〈
T̂
{
�̂4�̂

+
2 �̂3

}
�̂+

1

〉
,
〈
T̂
{
�̂4�̂

+
2 �̂3

}
�̂+

1

〉
, etc.

To unify the notations,we redefine the two-particle Green’s function by adding plus–minus
signs to the number of the variable, as has been done in [17]

K(4, (s4); 2, (s2); 3, (s3); 1, (s1)) ≡ K(4; 2; 3; 1) ≡ ��

�� 1, s1

2, s2

3, s3

4, s4
K (40)

where symbols s1, s2, s3 and s4 can be either plus or minus.
When all signs si in equation (40) are minus or plus, then this is the standard K or anti-

chronological K̃ two-particle Green’s function. If only three signs are the same then it is the
partial chronological Green’s function K̂ . In other cases, the two-particle Green’s functions
are non-chronological K ′ functions [19].

It follows from equations (12)–(15) that the probability of photon production (13) is
proportional to the two-particle Green’s function K(4(+), 2(−), 3(−), 1(+)).

According to [19], the two-particle Green’s functions satisfy the following equations:

��

�� 1, s1

2, s2

3, s3

4, s4
K

=
�

2, s24, s4

� 1, s13, s3

+
�

2, s23, s3

� 1, s14, s4

+
∑

a,b,c,d

�
�

�
�ϒ
��3, s3

��
4, s4

� 1, s1

�
2, s2

a

b

c
d K

. (41)

Here, ϒ is the exact indecomposable diagram, which means the set of all the diagrams that
cannot be cut by a vertical line so that this line only intersects two solid or dashed lines
which correspond to the exact or free one-particle Green’s functions in the Keldysh formalism
[18, 19]. The parameters a, b, c, d; a1, b1, c1, d1; a2, b2, c2, d2 can take plus–minus signs.
Summation in equation (41) is performed over all possible different combinations of these
parameters for every sum symbol. Thus, we should carry out integration and summation over
the variables corresponding to the points of the intersection of the ovals and the solid lines.

Let us consider that the particles are multiply scattered elastically in the matter. We
assume that the concentrations of the particles and the interactions between them are such that
the following inequality takes place

n|f |2 · max{|f |; λ} � 1 (42)

where n is the number of particles per unit volume, f is the scattering amplitude of two
particles in the matter, and λ is the wavelength of the particle. This inequality corresponds
to what is known as the gas approximation. This means that we can be restricted to the first
non-vanishing approximation with respect to the interaction between the particles in the
matter. In this case, the two-particle Green’s function K(4(+); 2(−)|3(−); 1(+)) satisfies
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the following equation

��

�� 1+

2−

3−

4+

K
=

� 1+3−

�
2−4+

+
∑
a,b

�

4+

���
��

���
��

�
�

�
	

�3−

�

�
� �

�

� 1+

2−

K
a b

a b

+
∑
a,b

�

4+

���
���
���

���
���
����

�3−

�
�

�
��� �

�

� 1+

2−

K
a b

a b

+
∑
a,b

�

4+

�����
���
��

�
�

�
	

�3−
�

�

�

� �

� 1+

2−

K
a b

a

b

(43)

Here, the solid lines denote the standard one-particle Green’s functions in the Keldysh diagram
technique [18, 20], the dashed lines represent the Green’s functions of free particles in the
same formalism [18, 20], and the dotted lines imply interaction between the particles in the
matter which is determined by the two-particle potential

iU++(X) ≡ iU(�ri − �rj )δ(t1 − t2) = 
 
 
 
 
 
 
 
 
 
+ +

iU−−(X) ≡ −iU(�ri − �rj )δ(t1 − t2) = 
 
 
 
 
 
 
 
 
 
− −. (44)

Equation (43) can be rewritten analytically as follows

K(4(+); 2(−)|3(−); 1(+)) = K(0)(4(+); 2(−)|3(−); 1(+))

+ K(0)(3(+); 2(−)|4(−); 1(+)) +
∑
a,b

∫
dXa dXb dX′

a dX′
b

· {G(0)(3(−); Xa(a))Ua(Xa − X′
a)Ub(Xb − X′

b)G(Xa(a); Xb(b))
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· G(X′
a(a); X′

b(b)) · G(X′
b(b); X′

a(a))K(4(+); 2(−)|Xb(b); 1(+))

+ G(0)(3(−); Xa(a))Ua(Xa − X′
a)Ub(Xb − X′

b)G(Xa(a); Xb(b))

· G(X′
a(a); Xb(b)) · G(X′

b(b); X′
a(a))K(4(+); 2(−)|Xb(b); 1(+))

− G(0)(3(−); Xa(a))Ua(Xa − X′
a)Ub(Xb − X′

b)G(4(+); Xb(b))

· G(X′
a(a); X′

b(b)) · G(X′
b(b); X′

a(a))K(Xb(b); 2(−)|Xa(a); 1(+))} (45)

where G(Xa(a); Xb(b)) and G(0)(Xa(a); Xb(b)) are the one-particle Green’s functions for
the interacting and free particles in the Keldysh formalism [18, 20], respectively, and a, b are
plus or minus signs.

Moreover, we assume that the static approximation [21] for the description of the particle
movement in the matter takes place. This approximation means that the matter returns to the
initial state just after any individual collision of two particles in the medium. In other words,
we assume that the particle producing photons undergoes pair collisions with other particles
in the matter which are the static scatterers approximately. From the point of view of the
diagram equation (43), this means tending all loops to the point in equation (43).

We assume that the emitting particle is a fermion with s = 1/2. Let us act by the Dirac
operator (p̂ − m), where m is the particle mass, on the variable whose number is ‘3’ in
equation (43). As a result, after the transfer to the momentum representation we go to the
some equation which we write by convention as

F3(K(4(+); 2(−)|3(−); 1(+))) = 0 (46)

where the index ‘3’ means the number of a variable.
Proceeding in the same way, we obtain similar equations with respect to the variables ‘1’,

‘2’ and ‘4’:

Fi(K(4(+); 2(−)|3(−); 1(+))) = 0 i = 1, 2, 4. (47)

Then, we subtract the equation F3(K(4(+); 2(−)|3(−); 1(+))) = 0 from F1(K(4(+);
2(−)|3(−); 1(+))) = 0 and F2(K(4(+); 2(−)|3(−); 1(+))) = 0 from F4(K(4(+); 2(−)|
3(−); 1(+))) = 0. As a result we go to the two kinetic-like equations. In order to go
to the approximation of the matter with static scatterers, we tend the loops to the point in
equation (43).

After this, ignoring the ‘mixing’ of the spin variables due to the particle interaction in the
matter5, and going from the momentum representation of the two-particle Green’s functions
K to the function F�k( �p′; �p′; t2; �p; �p; t1) according to the formulae (15)–(17) we derive the
equations (19) and (20).
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